Hyperelliptic jacobians without complex multiplication

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperelliptic Jacobians without Complex Multiplication

has only trivial endomorphisms over an algebraic closure of the ground field K if the Galois group Gal(f) of the polynomial f ∈ K[x] is “very big”. More precisely, if f is a polynomial of degree n ≥ 5 and Gal(f) is either the symmetric group Sn or the alternating group An then End(J(C)) = Z. Notice that it easily follows that the ring of K-endomorphisms of J(C) coincides with Z and the real pro...

متن کامل

Hyperelliptic Jacobians without Complex Multiplication in Positive Characteristic

has only trivial endomorphisms over an algebraic closure of the ground field K if the Galois group Gal(f) of the polynomial f ∈ K[x] of even degree is “very big”. More precisely, if f is a polynomial of even degree n ≥ 10 and Gal(f) is either the symmetric group Sn or the alternating group An then End(J(C)) = Z. Notice that it is known [10] that in this case (and even for all integers n ≥ 5) ei...

متن کامل

Hyperelliptic Jacobians with Real Multiplication

Let K be a field of characteristic different from 2, and let f(x) be a sextic polynomial irreducible over K with no repeated roots, whose Galois group is A5. If the Jacobian of the hyperelliptic curve y = f(x) admits real multiplication over the ground field from an order of a real quadratic number field, then either its endomorphism algebra is this quadratic field or the Jacobian is supersingu...

متن کامل

Hyperelliptic Jacobians without Complex Multiplication and Steinberg Representations in Positive Characteristic

In his previous papers [27, 28, 30] the author proved that in characteristic 6= 2 the jacobian J(C) of a hyperelliptic curve C : y = f(x) has only trivial endomorphisms over an algebraic closure Ka of the ground field K if the Galois group Gal(f) of the irreducible polynomial f(x) ∈ K[x] is either the symmetric group Sn or the alternating group An. Here n ≥ 9 is the degree of f . The goal of th...

متن کامل

Jacobians with Complex Multiplication

We construct and study two series of curves whose Jacobians admit complex multiplication. The curves arise as quotients of Galois coverings of the projective line with Galois group metacyclic groups Gq,3 of order 3q with q ≡ 1 mod 3 an odd prime, and Gm of order 2 . The complex multiplications arise as quotients of double coset algebras of the Galois groups of these coverings. We work out the C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2000

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2000.v7.n1.a11